

Program Overview: Update on Program Progress

James R. Brodrick, Ph.D.

US Department of Energy

Office of Energy Efficiency and Renewable Energy

Buildings Technologies Program

Table of Contents

- 1 Mission of Efficiency
- 2 Budget and Investment
- 3 Program Progress and Management

Mission Statement

Solid-State Lighting Program Mission

Guided by a government-industry partnership, the mission is to create a new market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy and enhance the quality of the lighted environment.

White-Light LED Efficacy Targets

White-Light OLED Efficacy Targets

The Legislative Authority Domenici-Barton Energy Policy Act 2005

Section 912

"The Secretary shall carry out a Next Generation Lighting Initiative in accordance with this section to support research, development, demonstration, and commercial application activities related to advanced solid-state lighting technologies based on white light emitting diodes."

Next Generation Lighting Initiative Key Points

- Authorizes \$50 million for FY2007 through FY 2013
- Competitively select Industry Alliance
- Award competitive R&D projects
- Directs for intellectual property guidance an Exceptional Circumstance Determination
- Make roadmaps and general information available to public
 - www.netl.doe.gov/ssl

Table of Contents

- 1 Mission of Efficiency
- 2 Budget and Investment
- 3 Program Progress and Management

Congressional Appropriation (\$ million)

^{*} Congressional Directive

SSL R&D Project Funding

Total Contract Value of Projects: \$51.7 million* (35 projects)

- OLED: \$24.8 million (14 projects)
- LED: \$26.9 million (21 projects)

^{*} The total contract value includes DOE funding (\$39.6 million) and applicant cost-share (\$12.2 million)

Recipients of DOE Funding

• The Department funds solid-state lighting research in partnership with industry, universities, and national labs.

Total Portfolio: Core Technology

	Total # of Projects	\$ Funding (million)
Light Emitting Diode		
High-efficiency semiconductor materials	8	\$10.1
Device approaches, structures and systems	4	\$3.1
Phosphors and conversion materials	5	\$5.5
Organic Light Emitting Diode		
High-efficiency, low-voltage stable materials	8	\$9.7
Low-cost encapsulation and packaging	3	\$5.5
Research on low-cost transparent electrodes	1	\$0.8
Total	29	\$34.7

Total Portfolio: Product Development

	Total # of Projects	\$ Funding (million)
Light Emitting Diode		
Manufactured Materials	0	\$0.0
Optical Coupling and Modeling	4	\$8.2
Organic Light Emitting Diode		
Between electrodes high-efficiency, low-voltage stable materials	1	\$4.1
Develop architectures that improve device robustness, increase lifetime and increase efficiency	1	\$4.8
Total	6	\$17.1

Compound Semiconductor Materials Systems

Of the 21 LED projects, 17 involve research with Gallium Nitride (GaN)
materials systems, and 4 involve work with other material systems.

Methods for Creating White Light

 Of the 21 LED projects, 4 are studying multi-color systems, 11 are researching pcLED systems, and 6 are studying technologies that could apply to either method of creating white light.

OLED Material Systems

 Of the 14 OLED projects, 12 projects are researching small molecule OLEDs, one is researching polymer OLEDs and one could apply to either OLED material system.

Table of Contents

- 1 Mission of Efficiency
- 2 Budget and Investment
- 3 Program Progress and Management

Cree Lighting Project Meets DOE FY05 Joule Target

- White LED device efficacy of 65 LPW
- Novel chip design balanced with multiple interrelated design parameters
- Pre-production prototype uses standard XLamp[™] package

OSRAM Demonstrates OLED Success

- Polymer-based white OLED
- Achieves record efficiency of 25 LPW
- Combines orange inorganic phosphor with record-setting blue-light device

University of California at Santa Barbara Advances LED Chip Design

- Altered chip geometry to increase light output
- Achieved photonic crystal effects in GaN
- Demonstrated micro-cavity LEDs in InGaN

Lumileds, University of New Mexico, Sandia National Laboratories Demonstrate Largest-Area Photonic Crystal LED

- Large-area devices key to:
 - Assisting in verifying extraction efficiency gains
 - Enabling systematic optimization of parameters
 - Allowing exposure of edge effects
- Important step toward low-cost, high-volume manufacturing of photonic crystal LEDs

Rensselaer Develops Silicone-based LED Encapsulant

- Has functional properties of traditional encapsulants
- Resists yellowing up to 140°C in UV light
 - Traditional encapsulant epoxies yellow due to oxidation or exposure to UV light
- Licensed by Rohm and Haas, who will support further research, market introduction

DOE Solid-State Lighting 5 Thrust – Total Program

Guiding technology advances from laboratory to marketplace

Stage Gate R&D Management

	Basic Science Research 1	Applied Research 2	Exploratory Development 3	Advanced Development 4	Engineering Development 5	Product Demonstration 6	Commercialize and Sales 7	
Technical Activities	Knowledge Base Expansion	Idea Generation	Proof of Technology- Product Definition	Proof of Technology- Working Model	Engineering Prototype	Production Prototype	Utilization by End User	
Gate Expectations	1 2 3 4 5 6 New Concept Proven Performance Over existing Market demand Criteria Production ready							
Deliverables Required for Gate Decisions	Paper or journal article Document proof of concept	Empirical performance evidence Building end- use energy	Compare to baseline Preliminary market assessment	Specifications Detailed market assessment Issues and benefits	Partnership agreements Field tested Cost/benefit analysis	Final product specification National energy savings potential		

^{*} SSL projects move through a stage-gate process, see "Winning at New Products", Robert Cooper, 2001.